用戶名: 密碼: 登錄 注冊 忘記密碼
高延展性和強度超高分子材料的研制及工業應用技術研究
2017-11-08       suixiang    瀏覽:3649    0  

【引言】

實現高強度、大延展性和韌性是高分子材料實現工業應用的重要因素。但是,目前為止,在使用材料設計策略改善這些屬性時存在共同的相反趨勢,這仍然是一個巨大的挑戰。在自然界中,貽貝的角質層表現出高達100%的斷裂應變,這是由蛋白質基質內的建筑顆粒狀微相分離結構引起的。本文報道了一種簡便的仿生顆粒狀納米結構聚合物薄膜。與其他聚乙烯醇膜相比,這種仿生納米結構聚合物膜顯示了122(±6.1)J·g -1的超高韌性,斷裂應變高達205%,抗拉強度高達91.2MPa,優于大多數工程塑料。這種出色的性能組合歸因于這種材料的獨特的納米級粒狀相分離結構。這些仿生設計的聚合物膜有望應用于組織工程和生物材料領域,如人造皮膚和腱,為開創一系列創新于未來應用的聚合物材料提供了一種新方法。

【成果簡介】

如今,由于其輕質且不錯的機械性能,聚合物材料在汽車、電氣電子、航空航天和組織工程等領域加速發展,具有很大的潛力,并將以更快的速度取代傳統的金屬和陶瓷材料。這些領域的應用條件促進了新材料所需強度、韌性和延展性的發展。盡管最近通過模仿天然珍珠層的層狀分層結構,基于石墨烯氧化物納米片制造了超強度和剛性的聚合物納米復合材料,但是它們大部分非常脆,具有很低的斷裂應變(通常小于10%)。這主要是因為強度、韌性和延展性由不同的機械機制控制,通常是相互排斥的。另一方面,傳統上引入納米級或微尺度改性劑以賦予具有增強的韌性和延展性的聚合物,通常導致聚合物基質的拉伸強度的顯著降低。因此,到目前為止,創造結合高拉伸強度、大延展性和高斷裂韌性的先進聚合物材料仍然是棘手的難題。

近期,來自澳大利亞迪肯大學的Qipeng Guo教授和浙江農林大學的PinganSong教授(共同通訊作者)等人在Adv.Mater上發表了一篇題為“Granular Nanostructure: A Facile Biomimetic Strategy for the Design of Supertough Polymeric Materials with High Ductility and Strength”的文章。以其解決如何制造具有所需水平的高強度、高延展性以及韌性更大的先進聚合物材料。在這項工作中,通過加入磺化苯乙烯 - 乙烯/丁烯 - 苯乙烯三嵌段共聚物(SSEBS)的顆粒狀納米體團,開發了具有高強度的超耐磨和高韌性聚乙烯醇(PVA)膜。 對于含有10wt%的SSEBS的顆粒狀納米結構PVA膜,具有91.2MPa的高拉伸強度, 122±6.1J·g -1的韌性,破壞時的破裂應變高達205%。 這些機械性能好、超耐磨和延性聚合物材料預計將在航空航天、柔性人造肌肉和組織工程方面發揮很大的應用前景。

【圖文導讀】


圖1 SSEBS的合成路線方案及其性能

A)海洋貽貝角質層的微結構和形態的示意圖,其結合了高于110MPa的硬度和高達100%的斷裂應變。

B)水分散型SSEBS的合成路線圖示。

C)PVA / 10wt%SSEBS膜。

D)顯示散布的粒狀SSEBS納米域的PVA膜的AFM圖像,SSEBS通過多個氫鍵與PVA相互作用。

E)通過由競爭性親水-疏水相互作用驅動的自組裝,SSEBS的相分離域的TEM圖像。

F)a)PVA和b)PVA / 10wt%SSEBS的拉伸應力 - 應變曲線,

G)機械斷裂后對應的數字圖像。


圖2 PVA、SSEBS及其混合物的衰減全反射傅立葉變換紅外光譜

A) O-H和   B)C-O或S-O伸縮振動的變化:a)PVA,b)SSEBS-1,c)SSBS-2,d)SSEBS-5,e)SSEBS-10,f)SSEBS-20和g)SSEBS。

C)PVA膜的玻璃化轉變溫度(Tg)作為SSEBS負載水平的函數。

D)PVA與SSEBS之間分子間多重氫鍵相互作用的示意圖。


圖3 力學性能比較圖

A)典型的拉伸曲線。

B)拉伸強度和模量。

C)PVA及其與SSEBS的共混膜的斷裂和韌性應變。

D)通過LBL自組裝和直接溶液澆鑄策略制備的PVA / SSEBS膜與其它PVA復合材料膜的韌性和斷裂應變的比較。


圖4 PVA和其與SSEBS的共混膜的SAXS散射圖及透射電子顯微鏡圖像

A)PVA。                  B)SSEBS-1。              C)SSEBS-2。

D,D1)SSEBS-5。                                            E,E1)SSEBS-10。

F,F1)SSEBS -20。拉伸失效前,D1,E1,F1表示張力后的相應樣品。

透射電子顯微鏡圖像:

G)SSEBS分散在水中,SSEBS-10 。   G1)拉伸之前;   G2)拉伸失效后。

H)SSEBS在PVA體系中的機械增韌機理的示意圖。

【小結】

總之,研究人員通過模擬海洋貽貝角質層的顆粒微結構,成功地設計出了高韌性和大斷裂應變的先進聚合物膜。制備的顆粒狀納米結構PVA膜顯示出122(±6.1)J·g -1的超韌性,與其他PVA膜相比已是世界之最,高破壞應變高達205%,比任何其他方法制備的PVA膜都高得多。此外,它還保持了91MPa以上的拉伸強度,仍然遠遠高于大多數工程塑料。該法的另一個好處是,可以大規模生產。這種先進PVA膜可望應用于組織工程中。這項工作提供了一種簡便的方法用于設計綜合高延展性、韌性的強力聚合物材料。

0
?
版權所有:漢尊(廈門)自動化科技有限公司 閩ICP備12010980號
喜乐彩票app